Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1281646, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090581

RESUMO

Cervical cancer is a leading cause of death among women globally, primarily driven by high-risk papillomaviruses. However, the effectiveness of chemotherapy is limited, underscoring the potential of personalized immunotherapies. Patient-derived organoids, which possess cellular heterogeneity, proper epithelial architecture and functionality, and long-term propagation capabilities offer a promising platform for developing viable strategies. In addition to αß T cells and natural killer (NK) cells, γδ T cells represent an immune cell population with significant therapeutic potential against both hematologic and solid tumours. To evaluate the efficacy of γδ T cells in cervical cancer treatment, we generated patient-derived healthy and cancer ectocervical organoids. Furthermore, we examined transformed healthy organoids, expressing HPV16 oncogenes E6 and E7. We analysed the effector function of in vitro expanded γδ T cells upon co-culture with organoids. Our findings demonstrated that healthy cervical organoids were less susceptible to γδ T cell-mediated cytotoxicity compared to HPV-transformed organoids and cancerous organoids. To identify the underlying pathways involved in this observed cytotoxicity, we performed bulk-RNA sequencing on the organoid lines, revealing differences in DNA-damage and cell cycle checkpoint pathways, as well as transcription of potential γδ T cell ligands. We validated these results using immunoblotting and flow cytometry. We also demonstrated the involvement of BTN3A1 and BTN2A1, crucial molecules for γδ T cell activation, as well as differential expression of PDL1/CD274 in cancer, E6/E7+ and healthy organoids. Interestingly, we observed a significant reduction in cytotoxicity upon blocking MSH2, a protein involved in DNA mismatch-repair. In summary, we established a co-culture system of γδ T cells with cervical cancer organoids, providing a novel in vitro model to optimize innovative patient-specific immunotherapies for cervical cancer.


Assuntos
Neoplasias do Colo do Útero , Humanos , Feminino , Proteínas E7 de Papillomavirus/genética , Colo do Útero/metabolismo , Organoides/metabolismo , DNA , Butirofilinas , Antígenos CD
2.
bioRxiv ; 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37461435

RESUMO

After ingestion of dormant cysts, the widespread protozoan parasite Giardia lamblia colonizes the host gastrointestinal tract via direct and reversible attachment using a novel microtubule organelle, the ventral disc. Extracellular attachment to the host allows the parasite to resist peristaltic flow, facilitates colonization and is proposed to cause damage to the microvilli of host enterocytes as well as disrupt host barrier integrity. The 9 um in diameter ventral disc is defined by a highly complex architecture of unique protein complexes scaffolded onto a spiral microtubule (MT) array of one hundred parallel, uniformly spaced MT polymers that bend approximately one and a quarter turns to form a domed structure. To investigate the role of disc-mediated attachment in causing epithelial cell damage, we used a new approach to rapidly create a stable quadruple knockout of Giardia of an essential ventral disc protein, MBP, using a new method of CRISPR-mediated gene disruption with multiple positive selectable markers. MBP quadruple KO mutant discs lack the characteristic domed architecture and possess a flattened crescent or horseshoe-shaped conformation that lacks the overlapping region, with severe defects in the microribbon-crossbridge (MR-CB) complex structure. MBP KO mutants are also unable to resist fluid flow required for attachment to inert surfaces. Importantly, MBP KO mutants have 100% penetrance off positive selection, which is essential for quantification of in vivo impacts of disc and attachment mutants with host cells. Using a new gastrointestinal organoid model of pathogenesis, we found that MBP KO infections had a significantly reduced ability to cause the barrier breakdown characteristic of wild-type infections. Overall, this work provides direct evidence of the role of MBP in creating the domed disc, as well as the first direct evidence that parasite attachment is necessary for host pathology, specifically epithelial barrier breakdown.

3.
Ann N Y Acad Sci ; 1515(1): 155-167, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35666953

RESUMO

Usually, duodenal barriers are investigated using intestinal cell lines like Caco-2, which in contrast to native tissue are limited in cell-type representation. Organoids can consist of all intestinal cell types and are supposed to better reflect the in vivo situation. Growing three-dimensionally, with the apical side facing the lumen, application of typical physiological techniques to analyze the barrier is difficult. Organoid-derived monolayers (ODMs) were developed to overcome this. After optimizing culturing conditions, ODMs were characterized and compared to Caco-2 and duodenal tissue. Tight junction composition and appearance were analyzed, and electrophysiological barrier properties, like paracellular and transcellular barrier function and macromolecule permeability, were evaluated. Furthermore, transcriptomic data were analyzed. ODMs had tight junction protein expression and paracellular barrier properties much more resembling the originating tissue than Caco-2. Transcellular barrier was similar between ODMs and native tissue but was increased in Caco-2. Transcriptomic data showed that Caco-2 expressed fewer solute carriers than ODMs and native tissue. In conclusion, while Caco-2 cells differ mostly in transcellular properties, ODMs reflect trans- and paracellular properties of the originating tissue. If cultured under optimized conditions, ODMs possess reproducible functionality, and the variety of different cell types makes them a suitable model for human tissue-specific investigations.


Assuntos
Organoides , Junções Íntimas , Células CACO-2 , Humanos , Mucosa Intestinal/metabolismo , Permeabilidade , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/metabolismo
4.
Bio Protoc ; 12(2): e4295, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35127985

RESUMO

In the expanding field of intestinal organoid research, various protocols for three- and two-dimensional organoid-derived cell cultures exist. Two-dimensional organoid-derived monolayers are used to overcome some limitations of three-dimensional organoid cultures. They are increasingly used also in infection research, to study physiological processes and tissue barrier functions, where easy experimental access of pathogens to the luminal and/or basolateral cell surface is required. This has resulted in an increasing number of publications reporting different protocols and media compositions for organoid manipulation, precluding direct comparisons of research outcomes in some cases. With this in mind, here we describe a protocol aimed at the harmonization of seeding conditions for three-dimensional intestinal organoids of four commonly used research species onto cell culture inserts, to create organoid-derived monolayers that form electrophysiologically tight epithelial barriers. We give an in-depth description of media compositions and culture conditions for creating these monolayers, enabling also the less experienced researchers to obtain reproducible results within a short period of time, and which should simplify the comparison of future studies between labs, but also encourage others to consider these systems as alternative cell culture models in their research. Graphic abstract: Schematic workflow of organoid-derived monolayer generation from intestinal spheroid cultures. ECM, extracellular matrix; ODM, organoid-derived monolayer.

5.
Gastroenterology ; 162(3): 844-858, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34822802

RESUMO

BACKGROUND & AIMS: The protozoa Giardia duodenalis is a major cause of gastrointestinal illness worldwide, but underlying pathophysiological mechanisms remain obscure, partly due to the absence of adequate cellular models. We aimed at overcoming these limitations and recapitulating the authentic series of pathogenic events in the primary human duodenal tissue by using the human organoid system. METHODS: We established a compartmentalized cellular transwell system with electrophysiological and barrier properties akin to duodenal mucosa and dissected the events leading to G. duodenalis-induced barrier breakdown by functional analysis of transcriptional, electrophysiological, and tight junction components. RESULTS: Organoid-derived cell layers of different donors showed a time- and parasite load-dependent leak flux indicated by collapse of the epithelial barrier upon G. duodenalis infection. Gene set enrichment analysis suggested major expression changes, including gene sets contributing to ion transport and tight junction structure. Solute carrier family 12 member 2 and cystic fibrosis transmembrane conductance regulator-dependent chloride secretion was reduced early after infection, while changes in the tight junction composition, localization, and structural organization occurred later as revealed by immunofluorescence analysis and freeze fracture electron microscopy. Functionally, barrier loss was linked to the adenosine 3',5'-cyclic monophosphate (cAMP)/protein kinase A-cAMP response element-binding protein signaling pathway. CONCLUSIONS: Data suggest a previously unknown sequence of events culminating in intestinal barrier dysfunction upon G. duodenalis infection during which alterations of cellular ion transport were followed by breakdown of the tight junctional complex and loss of epithelial integrity, events involving a cAMP/protein kinase A-cAMP response element-binding protein mechanism. These findings and the newly established organoid-derived model to study G. duodenalis infection may help to explore new options for intervening with disease and infection, in particular relevant for chronic cases of giardiasis.


Assuntos
Giardíase/fisiopatologia , Mucosa Intestinal/fisiopatologia , Transporte de Íons , Transdução de Sinais , Junções Íntimas/fisiologia , Apoptose , Células CACO-2 , Cloretos/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Duodeno , Impedância Elétrica , Giardia lamblia , Giardíase/genética , Giardíase/imunologia , Humanos , Interleucina-1/genética , Transporte de Íons/genética , NF-kappa B/genética , Organoides , Carga Parasitária , Membro 2 da Família 12 de Carreador de Soluto/genética , Junções Íntimas/genética , Junções Íntimas/patologia , Junções Íntimas/ultraestrutura , Transcriptoma , Fator de Necrose Tumoral alfa/genética
6.
Lab Anim ; 55(4): 307-316, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33557683

RESUMO

Various animal models are available to study cystic fibrosis (CF). These models may help to enhance our understanding of the pathology and contribute to the development of new treatments. We systematically searched all publications on CF animal models. Because of the large number of models retrieved, we split this mapping review into two parts. Previously, we presented the genetic CF animal models. In this paper we present the nongenetic CF animal models. While genetic animal models may, in theory, be preferable for genetic diseases, the phenotype of a genetic model does not automatically resemble human disease. Depending on the research question, other animal models may thus be more informative.We searched Pubmed and Embase and identified 12,303 unique publications (after duplicate removal). All references were screened for inclusion by two independent reviewers. The genetic animal models for CF (from 636 publications) were previously described. The non-genetic CF models (from 189 publications) are described in this paper, grouped by model type: infection-based, pharmacological, administration of human materials, xenografts and other. As before for the genetic models, an overview of basic model characteristics and outcome measures is provided. This CF animal model overview can be the basis for an objective, evidence-based model choice for specific research questions. Besides, it can help to retrieve relevant background literature on outcome measures of interest.


Assuntos
Fibrose Cística , Animais , Fibrose Cística/genética , Modelos Animais de Doenças , Humanos , Fenótipo
7.
J Immunol ; 205(1): 261-271, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32423918

RESUMO

IFNs, produced during viral infections, induce the expression of hundreds of IFN-stimulated genes (ISGs). Some ISGs have specific antiviral activity, whereas others regulate the cellular response. Besides functioning as an antiviral effector, ISG15 is a negative regulator of IFN signaling, and inherited ISG15 deficiency leads to autoinflammatory IFNopathies, in which individuals exhibit elevated ISG expression in the absence of pathogenic infection. We have recapitulated these effects in cultured human A549-ISG15-/- cells and (using A549-UBA7-/- cells) confirmed that posttranslational modification by ISG15 (ISGylation) is not required for regulation of the type I IFN response. ISG15-deficient cells pretreated with IFN-α were resistant to paramyxovirus infection. We also showed that IFN-α treatment of ISG15-deficient cells led to significant inhibition of global protein synthesis, leading us to ask whether resistance was due to the direct antiviral activity of ISGs or whether cells were nonpermissive because of translation defects. We took advantage of the knowledge that IFN-induced protein with tetratricopeptide repeats 1 (IFIT1) is the principal antiviral ISG for parainfluenza virus 5. Knockdown of IFIT1 restored parainfluenza virus 5 infection in IFN-α-pretreated, ISG15-deficient cells, confirming that resistance was due to the direct antiviral activity of the IFN response. However, resistance could be induced if cells were pretreated with IFN-α for longer times, presumably because of inhibition of protein synthesis. These data show that the cause of virus resistance is 2-fold; ISG15 deficiency leads to the early overexpression of specific antiviral ISGs, but the later response is dominated by an unanticipated, ISG15-dependent loss of translational control.


Assuntos
Citocinas/deficiência , Resistência à Doença/genética , Interferon-alfa/metabolismo , Infecções por Paramyxoviridae/imunologia , Transdução de Sinais/imunologia , Ubiquitinas/deficiência , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Chlorocebus aethiops , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Humanos , Vírus da Parainfluenza 2 Humana/imunologia , Vírus da Parainfluenza 3 Humana/imunologia , Vírus da Parainfluenza 5/imunologia , Infecções por Paramyxoviridae/virologia , Processamento de Proteína Pós-Traducional/imunologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/genética , Enzimas Ativadoras de Ubiquitina/genética , Células Vero
8.
Front Cell Infect Microbiol ; 10: 610368, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33692963

RESUMO

The small intestinal epithelium is the primary route of infection for many protozoan parasites. Understanding the mechanisms of infection, however, has been hindered due to the lack of appropriate models that recapitulate the complexity of the intestinal epithelium. Here, we describe an in vitro platform using stem cell-derived intestinal organoids established for four species that are important hosts of Apicomplexa and other protozoa in a zoonotic context: human, mouse, pig and chicken. The focus was set to create organoid-derived monolayers (ODMs) using the transwell system amenable for infection studies, and we provide straightforward guidelines for their generation and differentiation from organ-derived intestinal crypts. To this end, we reduced medium variations to an absolute minimum, allowing generation and differentiation of three-dimensional organoids for all four species and the subsequent generation of ODMs. Quantitative RT-PCR, immunolabeling with antibodies against marker proteins as well as transepithelial-electrical resistance (TEER) measurements were used to characterize ODM's integrity and functional state. These experiments show an overall uniform generation of monolayers suitable for Toxoplasma gondii infection, although robustness in terms of generation of stable TEER levels and cell differentiation status varies from species to species. Murine duodenal ODMs were then infected with T. gondii and/or Giardia duodenalis, two parasites that temporarily co-inhabit the intestinal niche but have not been studied previously in cellular co-infection models. T. gondii alone did not alter TEER values, integrity and transcriptional abundance of tight junction components. In contrast, in G. duodenalis-infected ODMs all these parameters were altered and T. gondii had no apparent influence on the G. duodenalis-triggered phenotype. In conclusion, we provide robust protocols for the generation, differentiation and characterization of intestinal organoids and ODMs from four species. We show their applications for comparative studies on parasite-host interactions during the early phase of a T. gondii infection but also its use for co-infections with other relevant intestinal protozoans.


Assuntos
Toxoplasma , Toxoplasmose , Animais , Biologia , Camundongos , Organoides , Suínos , Junções Íntimas
9.
Lab Anim ; 54(4): 330-340, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31411127

RESUMO

Animal models for cystic fibrosis (CF) have enhanced our understanding of the pathology and contributed to the development of new treatments. In the field of CF, many animal models have been developed and described. To our knowledge, thus far, none of the reviews of CF animal models has used a systematic methodology. A systematic approach to creating model overviews can lead to an objective, evidence-based choice of an animal model for new research questions. We searched Pubmed and Embase for the currently available animal models for CF. Two independent reviewers screened the results. We included all primary studies describing an animal model for CF. After duplicate removal, 12,304 publications were left. Because of the large number of models, in the current paper, only the genetic models are presented. A total of 636 publications were identified describing genetic animal models for CF in mice, pigs, ferrets, rats and zebrafish. Most of these models have an altered Cftr gene. An overview of basic model characteristics and outcome measures for these genetic models is provided, together with advice on using these data. As far as the authors are aware, this is one of the largest systematic mapping reviews on genetic animal models for CF. It can aid in selecting a suitable model and outcome measures. In general, the reporting quality of the included publications was poor. Further systematic reviews are warranted to determine the quality and translational value of these models further.


Assuntos
Fibrose Cística/genética , Modelos Animais de Doenças , Animais , Furões , Humanos , Camundongos , Modelos Genéticos , Ratos , Sus scrofa , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA